![]()
- 出生年:1994
- 教师拼音名称: yefumei
- 电子邮箱: 1e32ca794674f895b7041f9bd1805ae98d384a491c43e4329977759a1d7f8da1cfd9b81761aabe273e079de8d2c83f0b0b75fba21812214ccb326d02a45163199fdf0a60fbd432870c6404d4902a4b7eef8e1064388a681ff8319718e05a34398ec7c69f8a36f02ba36916fdbed8aa061e6ecd2a9d7db94a7c6ee3638af5d4d3
- 入职时间: 2024-12-04
- 所在单位: 数学与统计学院
- 学历: 博士研究生毕业
- 办公地点: 启智楼80614
- 性别: 女
- 学位: 理学博士学位
- 在职信息: 在岗
- 叶芙梅,余淑滨.The global interval bifurcation for Kirchhoff type problem with an indefinite weight function.[J]:Journal of Differential Equations,2024,402:315-327
- 叶芙梅,唐春雷,余淑滨.Limit profiles and the existence of bound states in exterior domains for fractional Choquard equations with critical exponent.[J]:Advances in Nonlinear Analysis,2024,13
- 叶芙梅,唐春雷,余淑滨.Global bifurcation of one-signed radial solutions for Minkowski- curvature equations involving indefinite weight and non-differentiable nonlinearities.[J]:Journal of Mathematical Analysis and Applications,2024,540
- ,叶芙梅.Unilateral global structure for discrete Dirichlet problem with Minkowski-curvature operator.[J]:Journal of Difference Equations and Applications,2025,31(1):66-84
- 叶芙梅,唐春雷,余淑滨.Positive solutions for the fractional Kirchhoff type problem in exterior domains.[J]:Computational and Applied Mathematics,2024,43(4):1-21
- 叶芙梅.Nontrivial solutions of discrete Kirchhoff-type problem via bifurcation theory.[J]:Opuscula Mathematica,2025,45(4):559-573
- ,叶芙梅,韩晓玲.Global bifurcation for N-dimensional p-Laplacian problem and its applications.[J]:Complex Variables and Elliptic Equations,2022,67(12):3074-3091
- ,叶芙梅.Global structure and one-sign solutions for second-order Sturm-Liouville difference equation with sign-changing weight.[J]:Mathematical Methods in the Applied Sciences,2022,45(3):1176-1188
- ,叶芙梅.Global structure for a fourth-order boundary value problem with sign-changing weight.[J]:Mathematica Slovaca,2021,70(5):1113-1124