EN

周桂林

教授    硕士生导师

个人信息 更多+
  • 教师英文名称: Guilin Zhou
  • 教师拼音名称: ZGL
  • 电子邮箱:
  • 入职时间: 2006-07-03
  • 所在单位: 环境与资源学院
  • 学历: 博士研究生毕业
  • 办公地点: 新北区(科创园)
  • 性别: 男
  • 学位: 博士
  • 在职信息: 在岗
  • 主要任职: 催化理论与应用技术重庆高校市级重点实验室主任
  • 其他任职: 九三学社重庆市南岸区委员会副主委

其他联系方式

邮编:

通讯/办公地址:

移动电话:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Oxygen vacancy induced MnO2 catalysts for efficient toluene catalytic oxidation

发布时间:2024-11-30
点击次数:

影响因子:
6.119
DOI码:
10.1039/D1CY01274F
所属单位:
中国科学院大学
发表刊物:
Catalysis Science & Technology
项目来源:
重庆市科技局,重庆工商大学
关键字:
Nano-MnO2 catalyst;Toluene;Catalytic oxidation
摘要:
Oxygen vacancies play a vital role in catalytic oxidation, and engineering oxygen vacancies onto Mn oxide catalysts is still a great challenge. Herein, oxygen vacancies have been simply tuned on α-MnO2 by a facile redox method and used for catalytic toluene oxidation. The MnO2-1.8 catalyst exhibited superior catalytic activity (T90 = 238 °C, 1000 ppm and T90 = 170 °C, 10,000 ppm) for toluene deep oxidation, robust stability, and water resistance. It has the highest oxygen vacancy concentration due to highly proportioned exposed high-index {310} facets and interfaces between facets. The correlation between oxygen vacancies and the textural structure and activity was scientifically investigated by various characterization technologies and density functional theory (DFT) calculations. The oxygen vacancy weakens the Mn–O bond strength, increases the amount of surface adsorbed active oxygen species, and improves the mobility of lattice oxygen species, resulting in the significant promotion of the catalytic activity. This paper presents a novel and facile redox synthesis method for enriching the oxygen vacancy engineering strategy and provides a deep understanding for developing high-activity Mn-based catalysts for the VOC degradation.
第一作者:
Hongmei Xie,Jia Zeng
合写作者:
Zhao Liu,Xuecheng Liu
论文类型:
源刊论文
通讯作者:
Guilin Zhou,Yi Jiang
学科门类:
工学
文献类型:
Journal Article
卷号:
11
页面范围:
6708–6723
是否译文:
发表时间:
2021-08-02
收录刊物:
SCI
发布期刊链接:
https://doi.org/10.1039/D1CY01274F